If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-t^2-2t+30=0
We add all the numbers together, and all the variables
-1t^2-2t+30=0
a = -1; b = -2; c = +30;
Δ = b2-4ac
Δ = -22-4·(-1)·30
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{31}}{2*-1}=\frac{2-2\sqrt{31}}{-2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{31}}{2*-1}=\frac{2+2\sqrt{31}}{-2} $
| 10-80+x=40 | | 2^n=138 | | 3x+50=70-x | | 4.72+12+n=54 | | x2+αx+1=0 | | 3x+50=70 | | (x-10)=125 | | x-0.2x=453100 | | (2x+8)(x-3)=104 | | C(x)=25x+107 | | Y=(2)(1.03)x | | x-0.1x^2=0 | | 6+8=-2x+2 | | -10+45=2x-16-11 | | 5(s=8)-46= | | 61+4y+3y+14=180 | | 66+4y+3y+9=180 | | 3(5z-3)=30 | | 3(5z-9)=30 | | 100=300-16x^2 | | 10x+50=60 | | y=300-16(2)^2 | | -9=3(g-5) | | y=300-16^2 | | 23x+9(6)=6 | | y=-16(1)^2+300 | | 9-4x=7x-11 | | 2x+2=0+3x | | 23(-9)+9y=6 | | 2x-1=—7 | | 23(-6)+9y=6 | | 3x+9=4-x |